How Many Conformations of Enzymes Should Be Sampled for DFT/MM Calculations? A Case Study of Fluoroacetate Dehalogenase

نویسندگان

  • Yanwei Li
  • Ruiming Zhang
  • Likai Du
  • Qingzhu Zhang
  • Wenxing Wang
چکیده

The quantum mechanics/molecular mechanics (QM/MM) method (e.g., density functional theory (DFT)/MM) is important in elucidating enzymatic mechanisms. It is indispensable to study "multiple" conformations of enzymes to get unbiased energetic and structural results. One challenging problem, however, is to determine the minimum number of conformations for DFT/MM calculations. Here, we propose two convergence criteria, namely the Boltzmann-weighted average barrier and the disproportionate effect, to tentatively address this issue. The criteria were tested by defluorination reaction catalyzed by fluoroacetate dehalogenase. The results suggest that at least 20 conformations of enzymatic residues are required for convergence using DFT/MM calculations. We also tested the correlation of energy barriers between small QM regions and big QM regions. A roughly positive correlation was found. This kind of correlation has not been reported in the literature. The correlation inspires us to propose a protocol for more efficient sampling. This saves 50% of the computational cost in our current case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequence‐ and activity‐based screening of microbial genomes for novel dehalogenases

Dehalogenases are environmentally important enzymes that detoxify organohalogens by cleaving their carbon-halogen bonds. Many microbial genomes harbour enzyme families containing dehalogenases, but a sequence-based identification of genuine dehalogenases with high confidence is challenging because of the low sequence conservation among these enzymes. Furthermore, these protein families harbour ...

متن کامل

Propensity based classification: Dehalogenase and non-dehalogenase enzymes

The present work was designed to classify and differentiate between the dehalogenase enzyme to non–dehalogenases (other hydrolases) by taking the amino acid propensity at the core, surface and both the parts. The data sets were made on an individual basis by selecting the 3D structures of protein available in the PDB (Protein Data Bank). The prediction of the core amino acid were predicted by I...

متن کامل

Reaction mechanism of fluoroacetate dehalogenase from Moraxella sp. B.

Fluoroacetate dehalogenase (EC 3.8.1.3) catalyzes the dehalogenation of fluoroacetate and other haloacetates. The amino acid sequence of fluoroacetate dehalogenase from Moraxella sp. B is similar to that of haloalkane dehalogenase (EC 3.8.1.5) from Xanthobacter autotrophicus GJ10 in the regions around Asp-105 and His-272, which correspond to the active site nucleophile Asp-124 and the base cata...

متن کامل

Ab Initio Study of Conformational and Configurational Properties of 1, 3- Diazacyclohepta-1, 2-diene and 1, 3-Diazacycloocta-1, 2-diene

Ab initio calculations at HF/6-31G* level of theory for geometry optimization and MP2/6-31G*//HF/6-31G* for a single point total energy calculation are reported for the importantenergy-minimum conformations and transition-state geometries of 1, 3-diazacyclohepta-1, 2-diene (2) and 1, 3-diazacycloocta-1, 2-diene (3). The C2 symmetric twist-chair (2-TC)conformation of 2 is calculated to be 7.4 kJ...

متن کامل

Theoretical Analysis on the Conformational Features of the HCO—Gly—L—Leu—NH2 Protected Dipeptide Motif: Ab initio and DFT Exploratory

For better understanding of conformational stability of the dipeptide model HCO—Gly—L—Leu—NH2,ab initio and DFT computations at HF/6-31G(4 6-311++G(d,p) and B3LYP/6-31G(d) levels oftheory were carried out. Geometry optimization of the dipeptide within the leucine (Leu) side chainangles (x2 ,x2) resulted in three stable conformations as followings: anti-anti, the most stable one,(Xi = 180°, x2 =...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016